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Abstract 
Crow’s ‘Opportunity for Selection’ (I=variance in relative fitness) is an important albeit 

controversial eco-evolutionary concept, particularly regarding the most appropriate null 
model(s).  Here we treat this topic in a comprehensive way by considering opportunities for both 
fertility selection (If) and viability selection (Im) for discrete generations, both seasonal and 
lifetime reproductive success in age-structured species, and for experimental designs that include 
either a full or partial life cycle, with complete enumeration or random subsampling.  For each 
scenario, a null model that includes random demographic stochasticity can be constructed that 
follows Crow’s initial formulation that I=If+Im. The two components of I are qualitatively 
different.  Whereas an adjusted If (∆If) can be computed that accounts for random demographic 
stochasticity in offspring number, Im cannot be similarly adjusted in the absence of data on 
phenotypic traits under viability selection.  Including as potential parents some individuals that 
die before reproductive age produces an overall, zero-inflated-Poisson null model. It is always 
important to remember that (1) Crow’s I represents only the opportunity for selection and not 
selection itself, and (2) the species’ biology can lead to random stochasticity in offspring number 
that is either overdispersed or underdispersed compared to the Poisson (Wright-Fisher) 
expectation.  
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INTRODUCTION 
In 1958, James Crow introduced what he termed the ‘Index of Total Selection’ (I), which 

subsequent authors generally refer to as the ‘Opportunity for Selection’ (Arnold and Wade 1984; 
Clutton-Brock 1988). I is the variance in relative fitness (Walsh and Lynch 2018), and is a 
relevant parameter in eco-evolutionary analyses in that its sets an upper limit to the rate of 
evolutionary adaptation--that is, the rate of evolution of fitness itself. The selection intensity on 
any given character also cannot exceed √I, so it follows that the rate of evolution of each 
character is constrained by I (see Reed et al. 2022 for more details regarding the practical 
usefulness of this concept).    

Over the years, Crow’s index has generated a good deal of interest (Wade and Arnold 
1980; Brodie at al. 1995; Ruzzante et al. 1996), as well as its share of controversy (Downhower 
et al. 1987; Fairbairn and Wilby 2001; Jennions et al. 2012).  When Crow’s index is based on the 
most direct measure of fitness (the number of offspring, k, produced by each potential parent), it 
is calculated as the squared coefficient of variation in offspring number: 

𝑠𝑠𝑘𝑘
2 

𝐼𝐼 = (1) � 2 ,𝑘𝑘 

with 𝑘𝑘� and sk being the mean and standard deviation of k. One unfortunate characteristic of I 
calculated as in Equation 1 is that the result is sensitive to 𝑘𝑘�, which means that conclusions about 
the Opportunity for Selection can depend as much or more on aspects of experimental design 
(sampling effort; life stage at which offspring are sampled) as they do on the biology of the focal 
species. Because an uneven sex ratio creates different mean offspring numbers for male and 
female parents, this dependence on 𝑘𝑘� also complicates comparisons of the Opportunity for 
Selection between sexes within the same population. 

Waples (2020) suggested a simple solution to the dependence of I on mean offspring 
number.  Under the Wright-Fisher model of random reproductive success (Tataru et al. 2017), all 
potential parents have an equal opportunity to produce offspring.  Conceptually in a Wright-
Fisher ‘ideal’ population, each of N individuals contributes exactly the same number to an 
essentially infinite pool of gametes, which then unite at random to form zygotes.  This leads to a 
binomial variance in offspring number (𝐸𝐸(𝑠𝑠𝑘𝑘2) = 𝑘𝑘�(𝑁𝑁 − 1)/𝑁𝑁), which is closely approximated 
by the Poisson variance 𝐸𝐸(𝑠𝑠𝑘𝑘2) = 𝑘𝑘�. It follows that the random expectation for I under Wright-
Fisher reproduction is 𝐸𝐸(𝐼𝐼) ≈ 1/𝑘𝑘�. This latter result had been pointed out by others (e.g., 
Downhower et al. 1987), but Waples (2020) showed that subtracting this random expectation 
from the raw I produces an adjusted index (∆𝐼𝐼 = 𝐼𝐼 − 1/𝑘𝑘�) that is independent of 𝑘𝑘�. Use of ∆𝐼𝐼 
rather than raw I thus can potentially facilitate comparisons of the Opportunity for Selection 
across species and across studies; within a study, it can also facilitate comparisons across 
different replicates (e.g., multiple seasonal episodes of reproduction) and between the sexes. 
Because this adjustment involves subtracting the expected contribution to I from random 
demographic stochasticity, it also can serve as a null model for the Opportunity for Selection, 
and null models increasingly play an important role in both ecology and evolutionary biology 
(Harvey et al. 1983; Maddison and Slatkin 1991; Gotelli and Ulrich 2012; Steiner and 
Tuljapurkar 2012; Farine 2017; van Daalen and Caswell 2017; Ross et al. 2020). 

However, the ∆I approach described by Waples (2020) has some important limitations.  
First, the theory behind ∆𝐼𝐼 and the numerical evaluations performed by Waples (2020) both 
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assumed discrete generations. Most real species, however, are age structured.  Although Waples 
(2020) discussed some of the possible implications of age structure for ∆𝐼𝐼, it is important to 
provide a more rigorous treatment for this key topic. Second, in many terrestrial vertebrates, 
physiological limits on litter or clutch size constrain the variance in annual offspring number, 
leading to underdispersion that makes the Poisson model a poor description of random 
demographic stochasticity. The third major limitation is that the ∆𝐼𝐼 approach only considered 
fitness variation in fecundity, whereas Crow’s formulation of I used a more general definition of 
fitness to include variation in survival as well as variation in offspring number.  

A comprehensive evaluation of null models for the Opportunity for Selection therefore 
must consider several additional scenarios beyond the one considered by Waples (2020): (1) 
explicitly accounting for age structure; (2) enumerating potential parents at an early life stage, 
followed by mortality prior to maturity and eventual reproduction by the survivors; (3) ignoring 
reproduction and only considering survival between two life stages; and (4) evaluating factors 
that cause random demographic stochasticity in annual reproductive success to deviate from the 
Poisson expectation. Our goal here is to provide a more comprehensive evaluation of null 
models for Crow’s index that accounts for these additional factors.  Analytical results are 
obtained for three different life-history scenarios:  discrete generations; seasonal reproduction in 
age-structured species; and lifetime reproductive success for iteroparous species.  For each life-
history scenario, we consider a range of experimental designs that lead to different, ordered 
combinations of survival and/or reproduction at different life stages.  Simulations are used to 
confirm analytical results and to illustrate practical applications for a range of experimental 
designs. 

METHODS 

Notation and Experimental Design 
The core data under consideration here are means and variances in the number of 

offspring (k) per potential parent.  Collecting these data requires taking samples of individuals in 
two ordered time periods, with T2 later in time than T1.  At T1, a set of N potential parents is 
identified, and the first sample of individuals is randomly collected from this set. For simplicity, 
in the treatments below it is assumed that the potential parents are exhaustively sampled, but 
randomly subsampling potential parents does not qualitatively change the results. At T2, a 
random sample of size NOff is collected from the offspring arising from the potential parents 
sampled in T1. The sample mean number of offspring per parent is therefore 𝑘𝑘� = NOff /N, whereas 
the sample variance (𝑠𝑠𝑘𝑘2) is a random variable that depends on various factors as described 
below. In general, it is best to measure reproductive success across a full life cycle (so at the 
same age or stage (T2 = T1), but one life cycle later); however, in many real-world applications 
this is difficult or impossible to accomplish, hence the more general treatment here. 

The above applies generally to discrete generations or to seasonal reproduction in age-
structured species.  For evaluation of lifetime reproductive success (LRS) in iteroparous species, 
it is necessary to integrate information about offspring number across parental lifespans. We use 
the “•” to denote metrics (such as 𝑘𝑘�• and 𝑠𝑠𝑘𝑘2 

•) associated with lifetime reproduction. 
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Components of the Opportunity for Selection 
Crow (1958) defined I in terms of the mean and variance in offspring number among a 

group of individuals enumerated at birth.  Subsequent mortality divides this initial cohort into 
two subgroups:  those that survive to reproductive age (fraction v) and those that do not (fraction 
1-v).  This stratification of the cohort into winners and losers vis a vis premature mortality 
allowed Crow to identify two components of I: one due to mortality (Im) and one due to 
differential fertility (If). Across the entire life cycle, overall I = Im + If, provided survival and 
reproduction are independent (see Arnold and Wade 1984). Whereas If can be a complicated 
function of the distribution of offspring number among surviving parents, the component due to 
mortality is simply a series of Bernoulli trials: Im = (1-v)/v = the fraction of potential parents that 
die before reaching sexual maturity, divided by the fraction that survive (Crow 1958). 

Discrete Generations 
With discrete generations, each birth cohort represents a generation, and all members 

simultaneously progress through the various life stages (J1, J1, … Jn, A), where the J represents 
various juvenile stages (J1 = zygotes) and A is the single adult stage; Figure 1.  The cycle is 
continuous, without any official start or end.  The most general model involves inventorying 
individuals at two ordered time points: T1 = any of the above stages, and T2 = some subsequent 
stage.  We restrict analysis to scenarios in which the maximum time frame is one full generation, 
but we also allow for consideration of analyses that cover only part of a generation. In this 
model, four general scenarios are possible, depending on the experimental design: I) T1 and T2 
encompass only survival and not reproduction (e.g., T1 = J2 and T2 = Jn>2); II) T1 and T2 
encompass only reproduction and not survival (T1 = A and T2 = J1); III) T1 and T2 encompass 
survival followed by reproduction (e.g., T1 = J3 and T2 = J2, as shown in Figure 1); IV) T1 and T2 
encompass reproduction followed by survival (e.g., T1 = A and T2 = J2).  In Results we consider 
appropriate null models for each of these scenarios. 

Overlapping Generations 
With overlapping generations, individuals of different ages live and reproduce at the 

same time, and some individuals survive to reproduce in subsequent time periods. The model 
used here is discrete-time, with age indexed by x, and assumes that reproduction is concentrated 
within seasonal time periods, hereafter without loss of generality assumed to be years.  This 
corresponds to the birth-pulse model of Caswell (2001), which is applicable to a wide range of 
taxa. Some key features of evolutionary demography for populations like this can be 
summarized by specifying the age-specific vital rate vx = probability of surviving from age x to 
age x+1. [A typical life table also specifies age-specific fecundity, but under our null model 
fecundity is assumed to be constant.] The cumulative survivorship function lx incorporates 
information about age-specific survival across individual lifespans and hence determines 
population age structure (Table 1).  Some key ages can be identified: 0 = newborns, which is the 
closest equivalent to zygotes; α = age at maturity (assumed to be fixed); and ω = maximum age. 
It is also important to define the set of individuals for which the mean and variance in offspring 
number will be computed.  We define z as the age at enumeration of potential parents and define 
the set of potential parents as individuals with age ≥ z, where z is in the range (0,α). [Technically, 
setting α<z≤ω is possible but is not considered here, as then reproductive success would be 
assessed for only a subset of mature individuals.] 
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For iteroparous species, reproductive skew and the Opportunity for Selection are 
commonly assessed in two different ways:  1) annual reproductive success across all individuals 
alive during a single season; and 2) lifetime reproductive success among individuals of the same 
birth cohort. 

Annual reproduction 
With annual reproduction, we are interested in the mean and variance in offspring 

number for all individuals with age ≥ z that are alive at a given time. Assuming the population 
has stable age structure and a fixed cohort size of N0 newborns, the vector of numbers alive at 
age x is Nx = N0lx, with l0 = 1, which leads to ΣNx = N0Σlx (Table 1). Therefore, if reproductive 
success is assessed for all individuals age z and older, the total number of potential parents for 
which 𝑘𝑘�, 𝑠𝑠𝑘𝑘2, and I are computed is (see Table 1 and Figure 2) 

𝜔𝜔 𝜔𝜔 𝑁𝑁𝑇𝑇 = ∑𝑥𝑥=𝑧𝑧 𝑁𝑁𝑥𝑥 = 𝑁𝑁0 ∑𝑥𝑥=𝑧𝑧 𝑙𝑙𝑥𝑥. (2) 

The age at which offspring are sampled also is a factor that can affect calculation of 𝑘𝑘�, 𝑠𝑠𝑘𝑘2, and I. 
However, the expectations for 𝑠𝑠𝑘𝑘2 and I are conditional on the mean offspring number rather than 
age (Waples 2020), so it is sufficient to express these expectations in terms of 𝑘𝑘�. 

Lifetime reproduction 
In contrast to annual reproductive success, which reflects offspring produced in a single 

time period by mixed-age individuals, LRS is typically assessed for a single birth cohort of 
individuals by integrating their annual reproductive success across entire lifespans.  The null 
model for LRS is more complicated because, in addition to accounting for random reproduction 
within years, it also has to account for the fact that some individuals live longer than others and 
thus have more opportunities to accumulate offspring. The maximum number of years or 
reproductive seasons in which any individual can reproduce is the adult lifespan: AL=ω–α+1.  In 
addition, mean and variance of LRS are also affected by the age at which the cohort is defined; if 
the cohort includes immature individuals, this has to be accounted for by a term for premature 
mortality, as is the case for discrete generations and annual reproduction. Finally, variance in 
LRS can be affected by correlations between survival and reproduction, or between reproduction 
by the same individual in different years/seasons. In the null model, these correlations are 
assumed to have expectations = 0. 

Let a cohort be defined by all individuals that survive to age z. Then, the number of 
individuals for which the mean and variance in lifetime offspring number are computed is 
Nz=N0lz. Using vital rates from a standard life table, it possible to compute the expected value of 
𝑠𝑠𝑘𝑘2 

• by grouping individuals by age at death (Waples et al. 2011; Waples 2022).  These ages at 
death are equivalent to treatments in an ANOVA analysis; assuming a fixed age at maturity, 
individuals that die at the same age have the same number of annual opportunities to reproduce 
and, under the null model, the same E(LRS). 

Simulations 
To verify the accuracy of the analytical expectations, we conducted computer simulations 

of random survival and reproduction using the null models described here.  Population 
demography followed Table 1, and computer code is available in Supporting Information.  Each 
replicate started with a fixed cohort size of 800 newborns, after which individuals survived to the 
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next age with probability 0.7.  This allowed for random variation in realized numbers-at-age (Nx) 
in each replicate. In Figures 3 and 5, the expected results use the stable-population Nx values 
shown in Table 1, whereas observed results are empirical medians across 1000 simulated 
replicates. 

RESULTS 

Discrete Generations 

Mortality only, no reproduction 
This is the simplest scenario; as shown by Crow (1958), Im = (1-v)/v, where v is the 

fraction of individuals that survive to the later life stage and 1-v is the fraction that do not.  No 
reproduction is involved, so ∆I as defined by Waples (2020) is not relevant here. Because all or 
none of this mortality could be random, there really is no quantitative null model here, in the 
same way there is for reproduction.  With respect to mortality, a reasonable null model would be 
one in which individuals survive across a specific life stage or time period independent of any 
phenotypic traits. This null model then could be rejected by finding a significant covariance 
between survival and phenotype. 

Reproduction only, no mortality 
In the null Wright-Fisher model, each individual contributes equally to the initial gamete 

pool, so at this first stage there is zero variance in offspring number.  In the real world, all 
gamete and zygote pools are finite. Therefore, any actual analysis of empirical data that involves 
estimating mean and variance in offspring number per parent will of necessity involve either a) 
enumerating offspring at a later life stage than zygotes, or b) subsampling only some of the 
offspring, or c) both.  These scenarios are described next. 

Mortality followed by reproduction 
Across a full life cycle, this scenario quantifies reproductive success of zygotes 

producing zygotes, and here we must consider both components of I. Crow defined If in the 
familiar format as the sum of squared deviations of offspring numbers from the mean (in our 
notation, ∑(𝑘𝑘𝑖𝑖 − 𝑘𝑘�)2).  For the purposes of identifying a null model, a more convenient approach 
is to deal instead with sums of squared offspring numbers (Σ(𝑘𝑘𝑖𝑖2)). 

2We take advantage of the parametric definition of a variance as var(k) = 𝜎𝜎𝑘𝑘 = 𝐸𝐸(𝑘𝑘2) − 
[𝐸𝐸(𝑘𝑘)]2 . If we let SS = sum of squares = Σ(k2) and 𝑘𝑘� = 𝐸𝐸(𝑘𝑘) = Σk/N and ignore the (N-1) 
correction for sample variance, then this can be written as 

2 �2𝑠𝑠𝑘𝑘 = 𝑆𝑆𝑆𝑆/𝑁𝑁 − 𝑘𝑘 . (3) 

Rearrangement produces an expression for the total sum of squares: 

SS = N(𝑠𝑠𝑘𝑘2 + 𝑘𝑘�2). (4) 
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In the null model, individuals survive at random, and those that do survive are assumed to have a 
Poisson distribution of reproductive success, regardless at what stage the offspring are counted 
(so for the mature individuals, 𝐸𝐸(𝑠𝑠𝑘𝑘2) = 𝑘𝑘�).  

If potential parents are sampled at some pre-adult life stage, and only the fraction v 
survive to age at maturity, at which point N remain, then the total number of individuals for 
which offspring numbers are counted is N/v. Let 𝑘𝑘�𝑇𝑇 = overall mean offspring number for these 
N/v individuals.  There are two groups: N/v – N do not survive to maturity and produce 0 
offspring, and N do survive and produce on average 𝑘𝑘�𝑣𝑣 offspring each.  The total number of 
offspring examined is 𝑘𝑘�𝑇𝑇N/v, so 𝑘𝑘�𝑣𝑣 = 𝑘𝑘�𝑇𝑇𝑁𝑁/(𝑁𝑁𝑁𝑁) = 𝑘𝑘�𝑇𝑇/𝑁𝑁.  So the N individuals that survive to 
maturity produce a mean 𝑘𝑘� = 𝑘𝑘�𝑇𝑇/𝑁𝑁 offspring each, and under the null model this is also = 𝑣𝑣 

2
𝑠𝑠𝑘𝑘2 

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). For the N adults, SSAdult = N(𝑘𝑘�𝑇𝑇/𝑁𝑁 + �𝑘𝑘�𝑇𝑇/𝑁𝑁� ), and this is also the total sum of 
squares, since those that died prematurely left no offspring.  The total variance in reproductive 
success across the N/v individuals is 

𝑘𝑘�𝑇𝑇 𝑘𝑘�𝑇𝑇 
2 

𝑁𝑁� +� � � 2𝑣𝑣 𝑣𝑣 2 �𝑇𝑇 + �𝑘𝑘
�𝑇𝑇 𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴) = 

�𝑁𝑁 − (𝑘𝑘�𝑇𝑇)2 = 𝑁𝑁 �𝑘𝑘 � � − (𝑘𝑘�𝑇𝑇)2 
� 𝑣𝑣 𝑣𝑣 

𝑣𝑣 

(𝑘𝑘� 𝑇𝑇)2 

= 𝑘𝑘�𝑇𝑇 + − (𝑘𝑘�𝑇𝑇)2 
𝑣𝑣 

= 𝑘𝑘�𝑇𝑇 + (𝑘𝑘�𝑇𝑇)2 �1 − 1�.
𝑣𝑣 

2With v=1 (no mortality prior to sexual maturity), this simplifies to 𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴) = 𝑘𝑘�𝑇𝑇, leading to 
𝐸𝐸(𝐼𝐼) = 𝑘𝑘�𝑇𝑇, consistent with ∆I (Waples 2020).  More generally, under the null model, 

2𝐸𝐸�𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)�𝐸𝐸(𝐼𝐼) = 
(𝑘𝑘� 𝑇𝑇)2 

= 1/𝑘𝑘�𝑇𝑇 + 1/𝑁𝑁 − 1 = 1/𝑘𝑘�𝑇𝑇 + (1 − 𝑁𝑁)/𝑁𝑁 = 𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑚𝑚, (5) 

where 𝐼𝐼𝑚𝑚 = (1 − 𝑁𝑁)/𝑁𝑁 as defined by Crow (1958).  This same result can be obtained using 
formulas for the mean and variance of a zero-inflated Poisson distribution (see Supporting 
Information). As the fraction that survive (v) declines, the term (1 − 𝑁𝑁)/𝑁𝑁 becomes arbitrarily 
large, and that is what inflates the Opportunity for Selection compared to the Poisson expectation 
that only applies to reproduction.  Note that 𝐼𝐼𝑓𝑓 in Equation 5 corresponds conceptually to the 
opportunity for fecundity selection via zygote fertility (i.e., how many zygotes each newly-
conceived individual produces), not adult fertility. 

Reproduction followed by mortality 
When reproductive success is measured per adult, a qualitative difference occurs in the 

Opportunity for Selection because there is no 𝐼𝐼𝑚𝑚 component, which as defined by Crow (1958) 
applies only to pre-reproductive mortality.  Instead, any mortality that occurs before offspring 
are enumerated is folded into the 𝐼𝐼𝑓𝑓 component.   
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Here, Wright-Fisher is an appropriate null model: no drift occurs at the first step 
(reproduction), so all variance in offspring number arises from random mortality between the 
zygote stage and the stage at which offspring are sampled.  The following two scenarios produce 
identical results from a statistical perspective: (1) randomly sampling a later life stage that has 
experienced random mortality, and (2) randomly sampling from the earlier life stage. Under 
Wright-Fisher, 𝐸𝐸(𝐼𝐼) = 1/𝑘𝑘�, regardless whether the sampled individuals represent the entire 
population of offspring alive at the stage sampled, or just a random subset.  This is the scenario 
∆I was designed to deal with. If offspring mortality is family-correlated (such that offspring 
from different families have different probabilities of surviving), that will increase the variance 
in offspring number (Crow and Morton 1955) and increase the Opportunity for Selection above 
the Poisson expectation.  In that scenario, ∆I will on average be positive, even when all 
individuals have an equal expectation of reproductive success; the overdispersion arises from a 
lack of independence of the fates of individuals from the same family (in an ideal Wright-Fisher 
population, individual fates are independent). However, by itself a positive value of ∆I would 
not indicate whether the departure from Wright-Fisher dynamics is due only to non-random 
reproduction by the parents, only to non-random survival of offspring, or both.  

Annual Reproduction 
In this case, means and variances of offspring number are computed across all or a subset 

of individuals that are alive in a given year or season.  Here the null model also involves two 
groups:  those that are mature and those that are not, and we want to determine E(I) for all NT 

individuals with age ≥z. Let NA = number of adults of all ages, let 𝑘𝑘�𝐴𝐴 = mean offspring number 
for adults and let 𝑘𝑘�𝑇𝑇 = mean offspring number for all NT individuals.  The total number of 
offspring examined is thus NT𝑘𝑘�𝑇𝑇, and these are all produced by the NA adults, so 𝑘𝑘�𝐴𝐴 = 𝑁𝑁𝑇𝑇𝑘𝑘�𝑇𝑇/𝑁𝑁𝐴𝐴, 

2and under the null model this is also 𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴) for adults.  So for the NA adults, 

= 𝑁𝑁𝐴𝐴[𝑁𝑁𝑇𝑇𝑘𝑘
�𝑇𝑇 SSAdult + (𝑁𝑁𝑇𝑇𝑘𝑘�𝑇𝑇/𝑁𝑁𝐴𝐴)2]

𝑁𝑁𝐴𝐴 
2 

= 𝑁𝑁𝑇𝑇𝑘𝑘�𝑇𝑇 + �𝑁𝑁𝑇𝑇𝑘𝑘�𝑇𝑇� /𝑁𝑁𝐴𝐴 

�𝑇𝑇[1 + 𝑁𝑁𝑇𝑇𝑘𝑘
�𝑇𝑇 = 𝑁𝑁𝑇𝑇𝑘𝑘 ].

𝑁𝑁𝐴𝐴 

SSAdult is also the total SST for all NT individuals, so it follows that the total variance in offspring 
number is 

𝑁𝑁𝑇𝑇𝑘𝑘�𝑇𝑇 𝑁𝑁𝑇𝑇𝑘𝑘�𝑇𝑇�1+ �
2 𝑁𝑁𝐴𝐴 𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴) = 

𝑁𝑁𝑇𝑇 
− (𝑘𝑘𝑇𝑇)2 . 

𝑁𝑁𝑇𝑇 = (𝑘𝑘�𝑇𝑇)2[ 1 + − 1] 
𝑘𝑘� 𝑇𝑇 𝑁𝑁𝐴𝐴 

= 𝑘𝑘�𝑇𝑇 + (𝑘𝑘�𝑇𝑇)2[𝑁𝑁𝑇𝑇 − 1].
𝑁𝑁𝐴𝐴 

2Therefore, 𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴) exceeds the Poisson expectation (𝑘𝑘�𝑇𝑇) to the extent that NT>𝑁𝑁𝐴𝐴, and this 
effect can be attributed to including a subset of immature individuals with zero probability of 
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2producing offspring in the calculations of 𝑘𝑘�𝑇𝑇 and 𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴). It follows that under the null model 
for annual reproduction,   

2𝐸𝐸�𝑠𝑠𝑘𝑘(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)�𝐸𝐸(𝐼𝐼) = 
(𝑘𝑘� 𝑇𝑇)2 

1 𝑁𝑁𝑇𝑇 1 𝑁𝑁𝑇𝑇−𝑁𝑁𝐴𝐴 = + − 1 = + = 𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑚𝑚,
𝑘𝑘� 𝑇𝑇 𝑁𝑁𝐴𝐴 𝑘𝑘� 𝑇𝑇 𝑁𝑁𝐴𝐴 

exactly as obtained under the discrete generation model (Equation 5).  Note that in the term 
(𝑁𝑁𝑇𝑇 − 𝑁𝑁𝐴𝐴)/𝑁𝑁𝐴𝐴, the denominator is the subset of the initial population that survives to age at 
reproduction and the numerator is the subset that do not, so this term is identical to 𝐼𝐼𝑚𝑚 as defined 
by Crow (1958).  If only adults are included in the computation, 𝑁𝑁𝑇𝑇/𝑁𝑁𝐴𝐴 = 1 and 𝐸𝐸(𝐼𝐼) = 1/𝑘𝑘�𝑇𝑇, as 
is the case for discrete generations. 

In the simulations of annual reproduction, observed values of 𝑠𝑠𝑘𝑘2 and Crow’s I agreed 
almost exactly with these expectations (Figure 3).  After subtracting the component 𝐼𝐼𝑚𝑚 to 
account for premature mortality, the component of Crow’s index related to fertility (𝐼𝐼𝑓𝑓 ) is just the 
inverse of the mean offspring number, as proposed by Waples (2020). 

The key ratio 𝑁𝑁𝑇𝑇/𝑁𝑁𝐴𝐴 can be expressed in terms of cumulative survivorship from age z to 
age α: 

𝛼𝛼−1 𝑉𝑉𝑧𝑧→𝛼𝛼 = ∏𝑥𝑥=𝑧𝑧 𝑁𝑁𝑥𝑥 , leading to 
𝛼𝛼−1 𝑁𝑁𝐴𝐴 = 𝑁𝑁𝑇𝑇 ∏𝑥𝑥=𝑧𝑧 𝑁𝑁𝑥𝑥 and 

𝛼𝛼−1 𝑁𝑁𝑇𝑇/𝑁𝑁𝐴𝐴 = 1/ ∏𝑥𝑥=𝑧𝑧 𝑁𝑁𝑥𝑥 . (6) 

For the special case where annual survival rate is constant for the ages involved (all vx = v), 
𝑉𝑉𝑧𝑧→𝛼𝛼 = 𝑁𝑁𝑦𝑦, where y = α-z = the difference between the ages at maturity and enumeration, which 
is also the number of annual episodes of random mortality between the two ages.  Equation 6 
then simplifies to 𝑁𝑁𝑇𝑇/𝑁𝑁𝐴𝐴 = 1/𝑁𝑁𝑦𝑦 . If y = 0, this reduces to 𝑁𝑁𝑇𝑇/𝑁𝑁𝐴𝐴 = 1, as expected. 

Although age-specific vital rates like those in Table 1 are commonly reported for 
iteroparous species, many semelparous species do not have a fixed age at maturity [for example, 
Pacific salmon (Waples 2006), annual plants with seed banks (Nunney 2002), and monocarpic 
perennials (Vitalis et al. 2004)], and these species therefore have an interesting combination of 
traits normally associated with both discrete and overlapping generations. In these species, 
annual reproduction involves potential parents of mixed ages, just as it does for iteroparous 
species. For semelparous species with variable age at maturity, therefore, annual reproduction 
can be analyzed using the same framework described in this section.  The difference is that for 
semelparous species this annual reproduction also represents their lifetime reproductive output; 
for iteroparous species, LRS can be analyzed as described below.   

Constraints on annual reproductive success 
Two types of constraint on annual reproductive success can cause the variance in 

offspring number in many species to be consistently less than the Poisson expectation by more 
than the small binomial-Poisson difference.   If maximum clutch or litter size is constrained to a 
small integer, that will limit the ability of some individuals to dominate reproduction, with the 
result that 𝐸𝐸(𝑠𝑠𝑘𝑘2) << 𝑘𝑘�  (Waples and Antao 2014).  This constraint takes an extreme form in 
species for which females (with perhaps rare exceptions) can only produce 0 or 1 offspring in a 

10 



 
 

   
     

  
  

 
   

   
 

   

      
   

  
     

  
 

   
 

 
    

   
    

   
  

 
    

     
   

  
     

  
       

     
      

    
    

     
 

  
 

   
    

   
 

2single season; in that case, Σ𝑘𝑘𝑖𝑖2/𝑁𝑁 = Σ𝑘𝑘𝑖𝑖/𝑁𝑁 = 𝑘𝑘�, so Equation 3 becomes 𝑠𝑠𝑘𝑘 = 𝑘𝑘� − 𝑘𝑘�2, resulting 
in a variance in annual offspring number that is always less than the mean.  

The second type of constraint narrows the distribution of offspring number for one 
reproductive event—as commonly observed for clutch size in birds, for example (Clutton-Brock 
1988).  Kendall and Wittmann (2010) suggested that this phenomenon could be explained if 
energetic constraints and physiological feedbacks cause the instantaneous probability of laying 
another egg (or producing another pup) to decline with the number of eggs/pups already in the 
nest/litter.  They proposed that the resulting distribution of clutch/litter sizes could be modeled 
using the generalized Poisson distribution, which has two parameters (λ1 and λ2) rather than the 
single parameter (λ) that characterizes the standard Poisson.  The generalized Poisson 

2distribution has a mean of 𝑘𝑘� = λ1/(1-λ2) and a variance of 𝑠𝑠𝑘𝑘 = 𝑘𝑘�/(1 − λ2)2 = λ1/(1-λ2)3, with λ2 

constrained to be <1 (Consul and Jain 1973). The term 1/(1-λ2) plays the role of a dispersion 
factor (Harris et al. 2012) that determines the degree of deviation from the standard Poisson: the 
variance is underdispersed if λ2 is negative, overdispersed if λ2 is positive, and reduces to the 
standard Poisson if λ2=0.  Empirical data show that as maximum clutch size becomes smaller the 
mode approaches the maximum (Kendall and Wittmann 2010), and that pattern is reflected in the 
generalized Poisson distribution as λ2 becomes more negative. Kendall and Wittmann (2010) 
analyzed published data for clutch and litter size distributions for over 150 populations of 
terrestrial vertebrates (birds, mammals, and reptiles).  They found that (1) the generalized 
Poisson provided a good statistical fit to 88% of the populations, much more than did other 
models, and (2) in all cases the λ2 parameter was negative, indicating 𝑠𝑠𝑘𝑘2 < 𝑘𝑘�. 

For the analysis of clutch or litter size data for species like this, applying the ∆𝐼𝐼 
adjustment proposed by Waples (2020) will overcompensate for random demographic 
stochasticity, leading to consistently negative estimates of ∆𝐼𝐼. In theory, this problem has a 
simple solution.  Let ϕ be the ratio of variance to mean offspring number (𝜙𝜙 = 𝑠𝑠𝑘𝑘2/𝑘𝑘�) under the 
generalized Poisson model that allows for underdispersion.  Then, the expected value of Crow’s I 
that accounts for random demographic variation in clutch or litter size is 𝐸𝐸(𝐼𝐼) = 𝑠𝑠𝑘𝑘2/𝑘𝑘�2 = 𝜙𝜙/𝑘𝑘�. 
Subtracting the quantity 𝜙𝜙/𝑘𝑘� rather than 1/𝑘𝑘� therefore will, on average, produce a generalized 
version of ∆𝐼𝐼 that is 0 when nothing but random demographic stochasticity is involved.  We 
illustrate this with empirical clutch size data for the great tit (Parus major) from the Netherlands 
(Figure 4). Here, variance in clutch size (7.1) was 26% lower than the mean (9.6), so 𝜙𝜙 = 
0.74—a typical result for this species.  Therefore, the generalized ∆𝐼𝐼 adjustment is to subtract 
0.74/9.6 = 0.077 from the raw value, rather than 1/9.6 = 0.104. To evaluate this new 
adjustment, we used the above equations to solve for λ1 and λ2 for the great tit data and 
simulated random clutch sizes for many replicate populations (see Supporting Information for 
details).  For each population we used a generalized ∆𝐼𝐼 adjustment based on 𝐸𝐸(𝜙𝜙) = 0.74, and 
resulting estimates of ∆𝐼𝐼 were distributed approximately evenly around 0 (Figure S1). 

Although a generalized ∆𝐼𝐼 can be computed in this way, caution should be used in the 
interpretation.  If the estimate of ϕ<1 is based on a model that quantifies the expected degree of 
underdispersion based on aspects of the species’ biology, then the adjusted index could be 
informative.  However, if the estimate of ϕ<1 is based on fitting the generalized Poisson to 
empirical data, then the process is rather circular, as the outcome would always be E(generalized 
∆𝐼𝐼) = 0 (as we found for great tits). 

In addition, it is important to realize that an estimate close to 0 does not necessarily mean 
that no selection is occurring via that fitness component. Clutch size is known to be heritable in 

11 



 
 

   
 

   
 

  
    

     
   

  
      

   
     

     
     

   
   

 
  

  
  

  
 

 
  

    
 

   
 

     
 

 
  

  
 

  
 

  
   

   
  

  

this (Reed et al. 2016) and other great tit populations (Santure et al 2013), meaning that additive 
genetic variance contributes to among-female variation in number of eggs laid, on top of 
demographic stochasticity. Thus, clutch size would be even more underdispersed absent any 
genetic variation for this fitness component, and the within-female residual variance from an 
‘animal model’ (Kruuk 2004; Wilson et al. 2010) could be used to estimate the random 
component alone. Clutch size is itself under variable/fluctuating selection (Saether et al. 2016), 
and so can be considered both as a trait and a fitness component, albeit one that correlates 
inconsistently and sometimes not at all with annual or lifetime measures of fitness (Reed et al. 
2016). Such traits/fitness components with low or highly variable ‘elasticities’ (van Tienderen 
2000) are not ideal for calculating the Opportunity for Selection, as I or ∆𝐼𝐼 measured via these 
traits/fitness components might correlate poorly with I or ∆𝐼𝐼 measured via total fitness. The 
evolutionary reasons for underdispersion in clutch/litter size remain unclear, but past selection 
for environmental or genetic canalization might have ‘whittled away’ variation. For great tits, 
Mulder et al. (2016) found that within-family variance in fledgling weight (a trait correlated with 
clutch size) is both heritable and under stabilizing selection, indicating that adaptive evolution of 
trait variances as well as trait means is possible. The Opportunity for Selection is designed to 
provide insights into what Grafen (1988) termed ‘selection in progress’—that is, selection that 
occurs within the time frame encompassed by the samples being analyzed (generally within a 
single generation or across a generation of parent-offspring reproduction).  To the extent that 
selection is currently operating on clutch or litter size, it likely involves selection for reaction 
norms that relate offspring number to key environmental covariates.  Evaluating this type of 
selection requires estimating the covariance between total fitness and reaction norm parameters 
(e.g., intercept and slope) that define the relationship between clutch size and the particular 
covariate of interest. This in turn requires repeated measures data on clutch size from the same 
individuals or families across time or space (i.e., different environments). 

The reproductive constraints discussed above apply directly only to females.  In the case 
of seasonal monogamy, similar constraints would apply indirectly to males.  Furthermore, if 
maximum female clutch/litter size is low and the number of females a single male can access is 
limited, that can place an upper limit on annual reproductive success of males (as might have 
occurred, for example, for male black bears from Michigan; Waples et al. 2018). 

Other factors that contribute to stochasticity 
Even in the absence of selection, other stochastic factors besides random variation in 

clutch/litter size can inflate the variance in offspring number and cause overdispersion compared 
to the Poisson expectation.  Kendall and Wittmann (2010) developed a model for which the 
distribution of annual offspring number depends on five factors: (1) probability that the 
individual actually produces a clutch or a litter; (2) probability that the nest or litter survives until 
enumeration; (3) distribution of offspring number, contingent on (1) and (2); (4) probability that 
an offspring survives to independence; and (5) probability that the parent will produce one or 
more additional clutches/litters in the same season.  So far we have only considered factor (3), 
but the other factors also can have a profound influence on the distribution of offspring number.  
All these factors can be mediated by selection but each can also have a substantial stochastic 
component.  Factors (1) and (2) lead to clutch/litter sizes of 0, which increase the overall 
variance in offspring number; these zeros are rarely included in empirical data for clutch/litter 
size, but it essential to consider them in an overall assessment of annual reproductive success. 
Failure of an entire clutch or litter is an example of family-correlated mortality discussed in the 
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section ‘Reproduction followed by mortality.” When variance in clutch/litter size is 
underdispersed, random mortality until a later life stage (factor (4)) will increase the variance-to-
mean ratio (ϕ) to approach the Poisson expectation of 1 (Waples 2020).  When it is important, 
factor (5) generally leads to a bimodal or multimodal distribution of offspring number, which 
also inflates ϕ. 

When all these factors are considered together, the variance in annual reproductive 
success will often be greater than the mean, even when clutch/litter size is underdispersed. Data 
for the Dutch great tits, which only considered factors (3) and (5), illustrate this phenomenon.  
Whereas ϕ was <1 for clutch size, the variance of total eggs/year was almost twice the mean after 
accounting for production of multiple clutches by some birds, and lifetime variance in egg 
production was over 4 times the mean (Figure 4).  The generalized version of ∆𝐼𝐼 is better suited 
to analysis of more comprehensive data like this.  If researchers can use a model like that of 
Kendall and Wittmann (2010), together with their knowledge of the species’ biology, to produce 
a comprehensive estimate of ϕ that accounts for as much of the random demographic 
stochasticity as possible (but does not soak up variation due to heritable traits affecting fitness), 
then the generalized ∆𝐼𝐼 = 𝐼𝐼 − 𝜙𝜙/𝑘𝑘� could provide a more robust estimate of the opportunity for 
selection. 

Lifetime reproductive success 
The cohorts that will be tracked for LRS include Nz=N0lz individuals. As with the discrete 

generation and annual analyses, we separately consider two subsets of the cohort:  those that 
survive to age at maturity, and those that do not.  The latter set all have 0 LRS, and their effect is 
to inflate the variance of LRS compared the expectation under the null model.  The relative size 
of these two subsets of the cohort is Nα=N0lα individuals that survive to sexual maturity and 
Ndie=Nz-Nα individuals that do not.  

The numbers-that-die-at-age are given by Dx=Nx-Nx+1, with Nω+1=0 because it is assumed 
all individuals die after reaching the maximum age (and, perhaps, producing offspring before 
dying). Focusing on the subset of Nα individuals in the initial cohort that survived to age at 
maturity, the number of possible ages at death is the same as the number of ages in the adult 
lifespan: AL=ω–α+1.  The advantage of grouping individuals by age at death is that they all have 
the same number of seasons in which to reproduce, which simplifies calculation of the mean and 
variance of LRS. It is convenient to renumber the ages at death (q) as q=1 … AL (so q=1 denotes 
individuals that survived to age at maturity but died before reaching age α+1). With this re-

𝐴𝐴𝐴𝐴 indexing, mean age at death is then 𝑞𝑞� = ∑𝑞𝑞=1 𝑞𝑞𝐷𝐷𝑞𝑞 /𝑁𝑁𝛼𝛼 . 
Let NOff• be the total number of sampled offspring that are matched to the Nα adults in a 

cohort for computation of LRS. Therefore, the sample mean LRS for the subset of the cohort that 
survived to age at maturity is 𝑘𝑘�•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠 = 𝑁𝑁𝑂𝑂𝑓𝑓𝑓𝑓•⁄𝑁𝑁𝛼𝛼 , and the corresponding sample mean for 

2the full cohort enumerated at age z is 𝑘𝑘�•𝑇𝑇 = 𝑁𝑁𝑂𝑂𝑓𝑓𝑓𝑓•⁄𝑁𝑁𝑧𝑧. Now let 𝑠𝑠𝑘𝑘•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠 be the sample 
estimate of the variance in LRS for the subset of the cohort that survived to age α and let 𝑠𝑠𝑘𝑘2 

•𝑇𝑇 be 
the corresponding estimate for the entire cohort.  Using the approach outlined above, we can 
express 𝑠𝑠𝑘𝑘2 

•𝑇𝑇 as a function of 𝑠𝑠𝑘𝑘2 
•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠 and the fractions of the cohort that did and did not 

survive to adulthood (see Supporting Information for details): 

2 22 2𝑠𝑠𝑘𝑘•𝑇𝑇 = (𝑁𝑁𝛼𝛼 /𝑁𝑁𝑧𝑧)𝑠𝑠𝑘𝑘•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠 + �𝑁𝑁𝑂𝑂𝑓𝑓𝑓𝑓•� �(𝑁𝑁𝛼𝛼𝑁𝑁𝑧𝑧) − �𝑁𝑁𝑂𝑂𝑓𝑓𝑓𝑓•⁄𝑁𝑁𝑧𝑧� . (7) 
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This leads to  

E(I) = 
2

𝐸𝐸(𝑠𝑠2𝑘𝑘•𝑇𝑇)/�𝑁𝑁𝑂𝑂𝑓𝑓𝑓𝑓•⁄𝑁𝑁𝑧𝑧�  

  
  = 𝑠𝑠2 𝑁𝑁𝛼𝛼𝑁𝑁𝑧𝑧 

𝑘𝑘•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠 2 + 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑚𝑚.      (8)  
�𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂•� 

 
Therefore, for LRS  as well as for  annual  and discrete-generation reproduction, the mortality  
component of  I can be  attributed to defining the cohort to include individuals that will not  
survive to age at maturity and hence are  guaranteed to have 0 LRS.   The remaining fraction of the  
overall Opportunity for Selection  therefore can be attributed to  If, provided the definition of the  
latter is flexible enough to allow for differential lifetime  fertility arising  from differences in  
longevity.  

We now focus on variance in LRS  for individuals that do survive to adulthood, in which 
case the term  (𝑁𝑁𝛼𝛼 /𝑁𝑁𝑧𝑧)  that accounts  for premature mortality can be ignored.  For the null model, 
we also need to know the expected number of offspring (𝐸𝐸(𝑘𝑘)) a surviving parent will produce  
in a single season, because all the variance components are a function of  𝐸𝐸(𝑘𝑘). The total number  
of potential reproductive  events  (mature individuals alive at specific  ages)  for the cohort is  𝑁𝑁𝐴𝐴 = 
𝑁𝑁 𝜔𝜔 
0 ∑ � 𝑥𝑥=𝛼𝛼 𝑙𝑙𝑥𝑥, so 𝐸𝐸(𝑘𝑘) = 𝑘𝑘 = 𝑁𝑁𝑂𝑂𝑓𝑓𝑓𝑓•/𝑁𝑁𝐴𝐴. It follows that the  expected LRS  for individuals that die  

at age q is given by 𝐸𝐸(𝐿𝐿𝐿𝐿𝑆𝑆𝑞𝑞) = 𝑞𝑞𝐸𝐸(𝑘𝑘)  and the overall mean LRS  of individuals that survive to 
maturity is  𝑘𝑘�•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠 = 𝑞𝑞�𝐸𝐸(𝑘𝑘).  

To a very good approximation, the  random  LRS  expectation for  𝑠𝑠2 
𝑘𝑘•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠  derived by  

Waples (2022)  can be simplified to (see Supporting Information for details):  
 

𝐸𝐸2(𝑘𝑘) ∑ 𝐴𝐴𝐴𝐴 𝐷𝐷 ∗(𝑞𝑞−𝑞𝑞�  )2
𝐸𝐸(𝑠𝑠2𝑘𝑘•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠)  ≈  𝑘𝑘� 1 

•𝑆𝑆𝐴𝐴 𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇   𝑞𝑞= 𝑞𝑞
𝑆𝑆 𝑆𝑆𝑠𝑠 +  .    (9)  

𝑁𝑁𝛼𝛼 

 
The first term in Equation 9 is the Poisson variance of  LRS  and the  second term accounts for  
random variation in lifespan (longevity).   Simulation results (Figure 5) confirm the accuracy of 
the approximation in Equation 9.  

It follows that  for Crow’s index  under the null model,   
 
E(I 22 • �Survivors) =  E(If•Random) = 𝐸𝐸(𝑠𝑠𝑘𝑘•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠)/𝑘𝑘•𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑠𝑠   

 
∑ 𝐴𝐴𝐴𝐴 𝐷𝐷 ∗(𝑞𝑞−𝑞𝑞�  )2

 ≈ 1/𝑘𝑘�•𝑆𝑆𝐴𝐴𝑆𝑆𝑣𝑣𝑖𝑖𝑣𝑣𝑇𝑇𝑆𝑆𝑠𝑠 +   𝑞𝑞=1 𝑞𝑞      
𝛼𝛼𝑞𝑞�2  

.  (10)  
𝑁𝑁

 
Equation 10 s hows that  under the null model  for LRS, the expected value of  the component  of the 
Opportunity for Selection r elated to reproduction (If•Random) is the inverse of the mean lifetime  
offspring number, plus a  term  (which does not depend on mean LRS) that accounts for random  
variation in longevity  (Figure 5).  This suggests an adjusted value of  ∆I for application to LRS  
data:  ∆I•  =  raw  If•  –  E(If•Random), where E(If•Random)  is given by Equation 10.   If population 
dynamics  follow the null model  (random variation in reproductive success  within years, and 
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random variation in age at death), ∆I• (like ∆I) has expectation 0 and does not depend on mean 
offspring number. 

DISCUSSION 
Analytical and numerical results presented here are congruent, and they lead to the 

following conclusions. 

Crow’s method for partitioning the Opportunity for Selection into components related to 
mortality (Im) and fertility (If) is appropriate for evaluating null models. 

This framework produces meaningful results for species with discrete generations, and 
for both annual and lifetime reproduction in age-structured species. Furthermore, this 
partitioning generally will be a necessary precursor to any meaningful analyses of selection. 
Reproductive success data that includes both premature mortality and variation in offspring 
number among survivors confounds viability selection and fertility selection, making effective 
inference difficult or impossible unless the components can be disentangled. 

Im is independent of, and If is inversely related to, mean offspring number. 
This result is evident from Figures 3 and 5 and applies to all three life history scenarios. 

Computing the Opportunity for Selection across an entire life cycle involves inherent 
tradeoffs. 

Total fitness of an individual can be defined as the number of offspring it produces at the 
start of the next generation (Walsh and Lynch 2018). To be informative with respect to total 
fitness, the Opportunity for Selection should be computed across an entire life cycle—otherwise, 
one is only studying fitness components.  Quantifying offspring number in terms of zygotes 
producing zygotes has the advantage that it covers an entire life cycle and restricts the analysis to 
a single generation, making it suitable for quantitative genetic analysis (Arnold 1985; Cheverud 
& Moore 1994).  However, unless newborns are sexually mature, zygote-to-zygote analyses will 
always involve both Im and If components, which complicates interpretation unless these 
components can be analyzed separately. 

Because tracking survival and reproduction by an entire cohort of zygotes can be 
logistically challenging, reproductive success in the wild is commonly measured in terms of 
offspring per adult, in which case production of adults by adults represents a full life cycle. 
Interpretation of adult-adult data in terms of the Opportunity for Selection presents two 
challenges.  First, although the Im component of I disappears because there is no premature 
mortality, offspring mortality is subsumed into the If component; therefore, an overall I value for 
adult-adult data reflects effects of both fertility and mortality, just as it does for zygote-zygote 
data.  Second, the Opportunity for Selection for adult-adult data is a mixed fitness measure that 
applies to both parental and offspring generations, which presents well-known problems with 
respect to interpretation (Prout 1969; Grafen 1988; Thomson & Hadfield 2017; Walsh and Lynch 
2018). 

Two important tradeoffs involving the Opportunity for Selection can therefore be 
summarized as follows.  (1) Computing the index across an entire life cycle provides information 
relevant to total fitness, but this complicates interpretation by combining effects of both survival 
and reproduction.  (2) Logistical challenges in collecting zygote-zygote data can be alleviated by 
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focusing on reproduction by adults, but this produces a mixed-fitness measure that spans parental 
and offspring generations.  Regardless how it is measured, the Opportunity for Selection across 
an entire life cycle can provide useful insights regarding total fitness, but interpretation will be 
challenging unless the fitness components can be analyzed separately. 

The appropriate null models differ substantially for Im and If components. 
Null models for If generally involve some form of random reproductive success.  Nothing 

comparable is available for Im, which can be entirely attributed to random survival, entirely 
attributed to selective mortality, or some combination. Therefore, the raw Im cannot be adjusted 
by subtracting the expected contribution from random stochasticity, as Waples (2020) proposed 
to account for random reproductive success. 

Instead, an appropriate null model for Im is that, if survival is random, one expects that 
the probability that an individual survives should be independent of its phenotype.  This null 
model therefore can be tested by evaluating whether any observed covariance between survival 
and a phenotypic trait is too large to be explained by random sampling error.  

The ∆I null model often will be applicable to evaluation of If. 
Waples (2020) proposed the ∆I approach based on analytical and numerical analyses of a 

discrete-generation model that did not consider premature mortality. Results presented here 
show that this still can be an appropriate null model for all three life histories, provided that the If 
component can be isolated from Im. This can be accomplished by either a) restricting the pool of 
potential parents (for calculating means and variances in offspring number) to mature 
individuals, in which case the results apply directly to If ; or b) quantifying the magnitude of 
premature mortality, so that the ratio (1-v)/v can be used to quantify Im, allowing it to be 
subtracted from the raw I to yield an estimate of If . 

Analysis of lifetime reproductive success is more complicated, because in that case If also 
includes a term for random variation in longevity (see Equation 10). However, the expected 
magnitude of the longevity term is easily calculated from cumulative, age-specific survivorship.  
After accounting for random variation in longevity, Crow’s Opportunity for Selection for LRS 
can be assessed using the standard ∆I framework, the only difference being that the adjustment 
involves subtracting the inverse of mean LRS (1/𝑘𝑘�•) rather than the inverse of mean annual 
offspring number (1/𝑘𝑘�). 

An exception occurs for females of species for which either clutch/litter size either (1) is 
constrained to a small integer, or (2) has reduced variance compared to the random Poisson 
expectation.  For these species with underdispersed variance in offspring number, using the 
standard adjustment proposed by Waples (2020) will lead to consistently negative ∆I values.  If 
the expected degree of underdispersion can be quantified (in terms of the ratio ϕ), a generalized 
∆I can be calculated that has an expectation of 0 when nothing but random demographic 
stochasticity is operating.  However, as noted in Results, this approach is likely to be useful only 
if the expected degree of underdispersion can be quantified independently based on aspects of 
the species’ biology. 

A positive ∆I does not guarantee that selection is occurring. 
It is always important to remember that Crow’s index reflects an opportunity for selection 

but does not by itself provide direct evidence for selection.  There are two major reasons for this 
caveat. 
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First, the ∆I adjustment accounts for the expected contribution of random (Poisson) 
variance in reproductive success to If . In any real-world application, the actual magnitude of this 
stochastic component is a random variable that is distributed around the expected value.  
Therefore, a positive ∆I can occur by chance, even under the null model; conversely, ∆I can be 
negative if, by chance, random variation in offspring number is smaller than expected (the same 
phenomenon—biologically unrealistic negative estimates—can occur with other unbiased 
estimators, such as Weir and Cockerham’s (1984) θ, an analogue of FST). Statistical significance 
of the ∆I index can be evaluated using the analytical expectation for the variance of 𝑠𝑠𝑘𝑘2 under 
Wright-Fisher reproduction (Waples and Faulkner 2009, as described in Supporting 
Information), or by simulations using code provided on Zenodo.  

The second major caveat is that, as discussed in Results, a variety of factors can cause 
non-random (family-correlated) variation in survival and/or reproduction that have nothing to do 
with selection.  To the extent that these factors are operating, the Poisson adjustment suggested 
by Waples (2020) will underestimate demographic stochasticity. If the influence of these factors 
on the distribution of offspring number can be estimated based on what is known about the 
biology of the focal species, a more robust ∆I estimator can be used. 

Other factors that can be important 
Our null model for LRS assumes that survival and reproduction are independent over 

time.  In the real world, both positive and negative correlations are common.  Persistent 
individual differences (some individuals being consistently above or below average at producing 
offspring) leads to positive temporal correlations in offspring number, increases var(LRS) (Lee et 
al. 2011), and generally would be expected to lead to a positive ∆I. Conversely, intermittent 
breeding generally reduces var(LRS) and hence ∆I•, because it limits opportunities for some 
individuals to consistently dominate offspring production (Waples and Antao 2014). For either 
scenario, comparison with a null model that assumes independence of survival and reproduction 
over time can provide a valuable reference point for interpreting empirical data. 

Intermittent breeding also has another consequence for annual reproduction: it reduces 
the number of breeders and creates two classes of potential parents—those that will participate in 
reproduction that season, and those that won’t.  The latter subset by definition all leave zero 
offspring, so including them in the calculation of the mean and variance in annual reproductive 
success has the same qualitative consequences as does premature mortality.  Two general options 
are available to deal with this issue.  First, if non-breeding adults are included in the calculations 
of 𝑠𝑠𝑘𝑘2 and 𝑘𝑘�, the null model could be adjusted to become a zero-inflated Poisson, as described in 
Supporting Information.  This option only requires an estimate of the fraction of non-breeders 
each year.  A second, simpler option is to use only breeders to compute 𝑠𝑠𝑘𝑘2 and 𝑘𝑘�, in which case 
the analysis can proceed as described above. 

Analyses presented here have all assumed that, although age at maturity might vary 
among populations, within a population a single α applies to all individuals. In many real 
populations age at maturity varies among individuals, in which case at some ages there is a mix 
of mature and immature individuals.  By definition all the immature individuals produce zero 
offspring until they mature, so for those mixed ages the consequences are similar to having a mix 
of breeders and non-breeders. If immature individuals can be identified, they can be excluded 
from the pool of potential parents used to compute 𝑠𝑠𝑘𝑘2 and 𝑘𝑘�; if not but the fraction mature at 
each age can be estimated, this information could be used to compute an analogue to Im that can 
be removed, so analysis can focus on the If component. 
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 lx 

 
 Nx 

 
 Dx 

 Age at 
  Death (q)  Dq 

 0  1  800  240  
 1  0.7000  560  168  
 2  0.4900  392  118  
 3  0.3430  274  82  1  82 
 4  0.2401  192  58  2  58 
 5  0.1681  134  40  3  40 
 6  0.1176  94  28  4  28 
 7  0.0824  66  20  5  20 
 8  0.0576  46  14  6  14 
 9  0.0404  32  32  7  32 

 NT   1790   
  NA  838 
 

   
 

  
  

   
   

     
    

   
    

 
    

   
  

Table 1.  Demographic data for the age-structured population illustrated in Figure 2.  

Notes: The hypothetical population has 10 age classes (0-9), constant survival at the rate 
v=0.7/season, a fixed cohort size of N0=800 newborns, and reaches sexual maturity at age α=3.  
Data apply to a single sex and could vary by sex.  lx is cumulative survivorship through age x; 
Nx=N0lx=number of individuals alive at age x; Dx=number of individuals that die between ages x 
and x+1; q=age at death, scaled to reflect the number of years of the adult lifespan during which 
the individual potentially could have reproduced (ages α:ω=3:9 in this example); Dq=Dx for the 
years of the adult lifespan, re-indexed by q. In the example in Figure 2, the age at enumeration 
(which defines the set of potential parents for which reproductive success will be assessed) is

𝜔𝜔 z=1.  For analysis of annual reproduction (Figure 3), 𝑁𝑁𝑇𝑇 = ∑𝑥𝑥=𝑧𝑧 𝑁𝑁𝑥𝑥 = 1790 and the total 
𝜔𝜔 population of adults is 𝑁𝑁𝐴𝐴 = ∑𝑥𝑥=𝛼𝛼 𝑁𝑁𝑥𝑥 = 838. These same data can be used for the analysis of 

lifetime reproductive success (Figure 5), which focuses on the number of individuals in a cohort 
that reach age at enumeration (𝑁𝑁𝑧𝑧 = 𝑁𝑁1 = 560) or age at maturity (𝑁𝑁𝛼𝛼 = 𝑁𝑁3 = 274). 
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Figure Legends 

Figure 1. Generic life cycle model for a species with discrete generations.  Reproduction only 
occurs at the adult stage (black), whereas earlier life stage (gray) experience sequential episodes 
of mortality. T1 is the life stage at which potential adults are sampled, and T2 is the life stage at 
which their offspring are sampled.   

Figure 2. The stable age-structure pyramid for a hypothetical population with demographic data 
from Table 1.  Solid arrows and Dx are numbers of individuals that die after age x but before age 
x+1.  Maximum age is ω=9 and age at maturity is α=3, so the black rectangles represent all 
adults (NA) alive at any given time. Annual reproductive success (see Figure 3) is assessed for 
all NT individuals with age ≥ age at enumeration, which in this example is z=1.  Individuals aged 
1 and 2 (shaded rectangles) are not sexually mature and hence all produce 0 offspring in the 
current season.  Analysis of lifetime reproductive success (see Figure 5) focuses on individuals 
in a single birth cohort.  

Figure 3.  Annual reproductive success under the null model, using demographic data from Table 
1.  Dotted lines are expected results based on equations in the text; symbols are medians of 1000 
replicate simulations. Note the log scales on the Y axes.  Means and variances were calculated in 
two ways: for all individuals with age≥age at enumeration (“1+”); and only for individuals with 
age ≥ age at maturity (“3+”).  Top: 𝑠𝑠𝑘𝑘2 as a function of mean annual offspring number.  The ratio 
of the number of age-1 individuals that die before reaching age 3 (286) to the number that 
survive (274) is >1, so when all the age-1 individuals are included as potential parents (solid 
squares), 𝑘𝑘� is reduced by a factor of more than 2, and the variance in offspring number is inflated 
by deterministic zeroes for those 286 individuals.  Bottom: raw values of Crow’s I are also 
inflated by inclusion of immature individuals as potential parents (solid triangles).  After 
subtracting the constant value of Im=286/274=1.04 to account for the fraction of immature 
individuals, the net value of If accounts for random variation in fertility and its expected value is 
1/𝑘𝑘� (solid circles), which is the same result obtained when reproductive success is assessed 
using only mature individuals (open circles). 

Figure 4.  Distribution of egg production in the population of great tits from Hoge-Veluwe, the 
Netherlands, in 1980.  Mean and variance are shown for clutch size (black bars), total eggs per 
year (green bars), and total eggs per lifetime (yellow bars) for the cohort of females that matured 
at age 1 in 1980.  The last bar on the right shows the number of birds with lifetime egg 
production >30. 

Figure 5. LRS under the null model, using demographic data from Table 1.  Lines are expected 
results based on equations in the text; symbols are medians of 1000 replicate simulations.  Means 
and variances were calculated only for the mature individuals in a cohort.  Note the log scales on 
the Y axes.  Top:  variance in LRS as a function of 𝑘𝑘�•. Dotted line and filled squares show the 
total variance; solid line shows the theoretical expectation for the component arising from 
random variation in longevity.  Bottom:  Crow’s Opportunity for Selection component If•Random 

as a function of 𝑘𝑘�•.  Dotted line and filled triangles show the raw If•; solid line shows the 
theoretical expectation for random variation in longevity (hich is independent of mean offspring 
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number), and dashed line and open triangles show the net If•; after subtracting the longevity 
component.  After this adjustment, the expected value of the net If•Random=1/𝑘𝑘�•. 
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